报告题目:Artificial intelligence-enhanced atom probe microscopy: Local chemical ordering analysis
基于人工智能增强的原子探针显微技术:局域化学有序性分析
报告人:李跃,德国洪堡学者(独立PI),德国马普学会可持续材料研究所项目组长、博士生导师
报告时间:2025年7月25日10:00-11:30
报告地点:秀山校区冶金楼南302学术报告厅(腾讯会议:220-644-892; 会议密码:202507)
报告对象:全校感兴趣师生
主办单位:bet365备用网址
报告人简介:李跃博士,德国洪堡学者,德国马普学会可持续材料研究所项目组长,博士生导师。2019年毕业于北京科技大学,获博士学位,2019年至今于德国马普学会可持续材料研究所(原马普钢铁所)从事博士后和德国洪堡学者研究。主要从事机器学习辅助的三维原子探针表征、轻质合金的智能设计等相关研究。截至目前作为第一或通讯作者发表知名SCI论文20篇,包括Adv. Mater. (封面论文), Nat. Commun., Acta Mater.(4篇)和Prog. Mater. Sci.等,并作10多次国际会议的邀请报告。
报告内容简介:Chemical short-range order (CSRO), describing preferential local ordering of elements within the disordered matrix, can change the mechanical and functional properties of materials. CSRO is typically characterized indirectly, using volume-averaged (e.g. X-ray/neutron scattering) or through projection microscopy techniques that fail to capture the complex, three-dimensional atomistic architectures. Quantitative assessment of CSRO and concrete structure-property relationships have remained so far unachievable. Here, we present a machine-learning enhanced approach to break the inherent resolution limits of atom probe tomography to reveal three-dimensional analytical imaging of the size and morphology of multiple CSRO. We showcase our approach by addressing a long-standing question encountered in a body-centred-cubic Fe-18Al and Fe-19Ga (at.%) alloy that sees anomalous property changes upon heat treatment, supported by electron diffraction and synchrotron X-ray scattering techniques. The proposed strategy can be generally employed to investigate short/medium/long-range ordering phenomena in a vast array of materials and help design future high-performance materials.